Sludge to Resource – StR ©

Advanced Processing of Sludge by German Technology

Environmental Technology – Water & Sludge

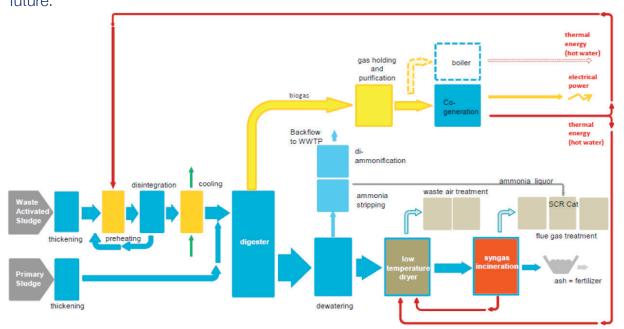
Increasing water scarcity in the world calls for sustainable solutions in the face of drought, population growth and outdated infrastructure. BHU Umwelttechnik GmbH offers state-of-the-art technologies, processes and systems for water treatment, wastewater and sludge treatment.

BHU Umwelttechnik GmbH covers the entire spectrum of processes and technologies for water and sludge treatment for municipal and industrial applications - for new plants as well as for upgrading existing establishments. Our know-how makes us a reliable partner who supports you in all phases of the project, from the planning through to the ready-to-operate plant.

Our engineers specialize in the physical, chemical, biological and thermal aspects of water and sludge technology processes, providing you with the best possible solution for your job. We determine the optimal treatment stages and integrate them into a holistic, technically and economically optimal plant. The know-how and many years of experience of our employees enables us to process all types of water resources and to produce the desired water quality. Our in-house technology spectrum offers the necessary prerequisites for this.

Some key facts about us

- » Based in Leonberg (Stuttgart), Germany
- » Office in Qingdao
- » More than 60 projects worldwide
- » 10 municipal & industrial water projects in China
- » Traditional company with long history, originally grounded in 1896, actual company & label BHU established in 2000.

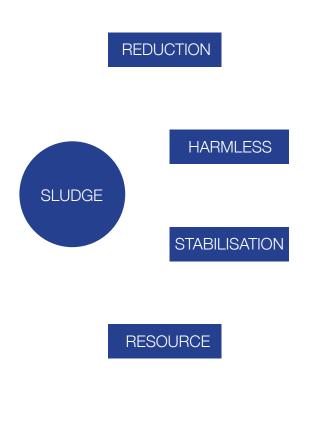


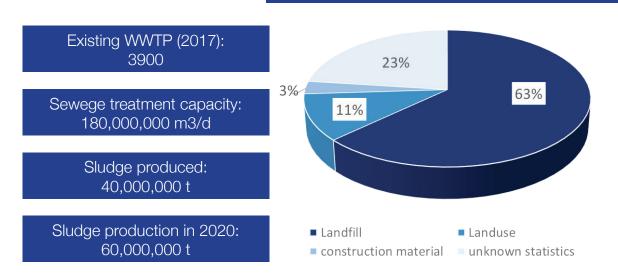
Sludge to Resource © - Process

The complete solution for sewage sludge disposal

We can not only provide high standards for users in accordance with German standards, that is, the so-called high-quality, all-chain of the overall solution, but also to provide users with step-wise solutions. Our phased program is forward-looking to enable users to upgrade existing sludge treatment processes to a cycle, green, low-carbon, healthy closed-loop design with sufficient funding and policy allowable future. We have been collecting experience with Chinese projects for 12 years. Therefore, it is time to apply our strong expertise in sludge treatment in China as well. For this we deliver:

Advanced solution - Full StR [©] Step-by-step solution - Partial StR [©]

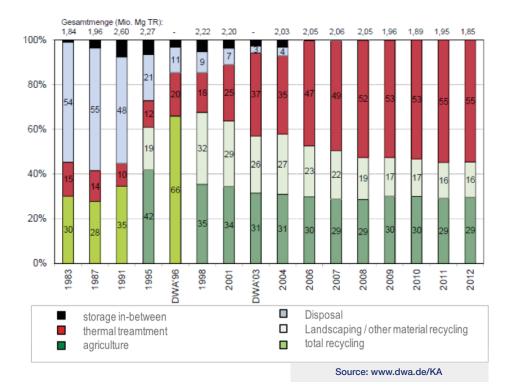

4


Sludge Treatment Policy in China

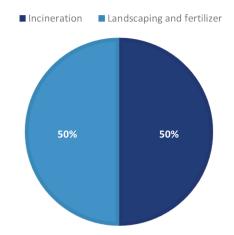
National 13th Five-Year Plan

"Thirteen five" national urban sewage treatment and recycling facilities construction planning" in the sludge treatment and disposal of technical requirements:

Adhere to the principle of harmless treatment and disposal, combined with the level of economic and social development in various places, and adopt mature and reliable sludge treatment and disposal technology according to local conditions. Encourage the use of energy and resource technology to recycle energy and resources in the sludge as much as possible, and encourage the sludge that has been stabilized and harmless to be made into organic carbon soil that meets relevant standards for afforestation in wasteland. Seedling raising, landscaping, etc.

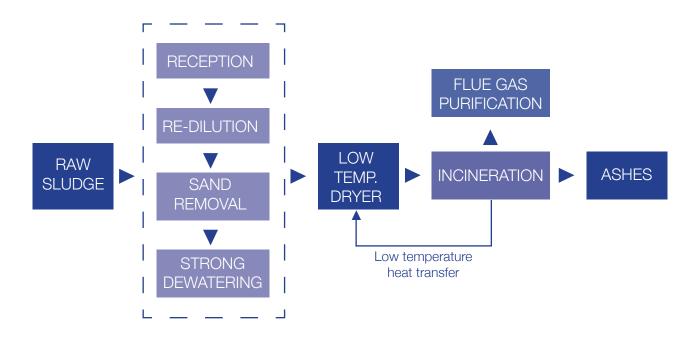


Current disposal methods in China:


Sludge Treatment Policy in Germany

Germany also deals with sludge treatment over 30 years of discussion and controversy. In 2005, the sludge disposal approach was discontinued in the form of a law and a new sewage sludge law was introduced in August 2017. The new law stipulates that after a defined transition period (12 or 15 years) all sewage treatment plants with more than 50,000 population equivalents (approx. 10,000 m3/d) must carry out phosphorus return from sludge or sludge ash, whereby the use of sludge is prohibited. Dry sludge incineration in combination with previous anaerobic digestion will become the main path of sludge disposal in Germany.

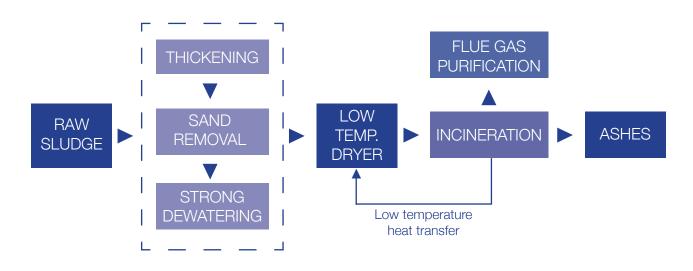
There are also other supporting policies and laws, such as EEG since April 2000 to promote the use of renewable energy.

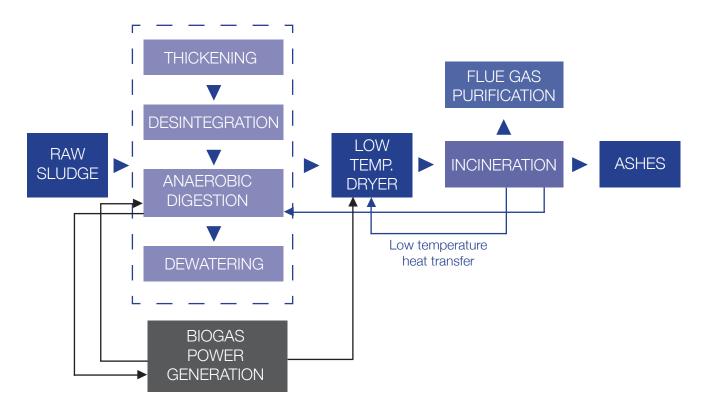

CURRENT DISPOSAL METHODS IN GERMANY

Total sewage sludge: approx. 2 millions tDS / a

Centralized treatment

Sludge from different waste water treatment plants is delivered to the sludge treatment center and get treated there.




Individual treatment

Sludge from the waste water treatment plant is directly treated in its own sludge treatment plant.

Individual treatment - Low Organic Dry Matter

Individual treatment - High Organic Dry Matter

StR[©] - Characteristics

- Proven technology from Germany with
 38 references in Europe
- Auto-thermal operation

 (no demand of natural gas co-firing in continuous operation)
- Small footprint
- Low operation cost
- Special design for Chinese market
- High rate of return

- High resource recovery
- 8000 operation hours guaranteed
- upgradable in steps compliant to more strict government rules in the coming years
- Qualified emission of the whole process and single unit according to Chinese regulations

BHU has 40 years of experience in municipal sludge treatment, and the relevant incineration plant in Germany has been in good operation for more than 15 years. Until now, there is not any environmental problem occured. The emmission of the process fully fulfill the chinese standards,

including "GB16297-1996", "GB18485-2014" and "GB 14554-1993".

The final production of the process contains rich Nitrate and Phosphorus, which is resource utilization of the municipal sludge.

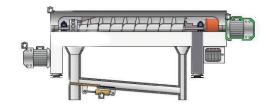
StR[©] - Main features

SLUDGE HYDROLYSIS

- Simple design
- Heating up to 65°C only
- Normal pressure reaction vessel,
 RT 2 hours
- Moderate design of sodium hydroxide solution (NaOH)
- Biogas production in the digester increased by 30%
- ODS after digestion reduced by 30%
- Necessary retention time in digester reduced by 25 %
- Digester volume reduced by 20 %
- Improved dewaterability of sludge

DIGESTION

- Complete mixing without sludge settling zones
- Proper gas flow guide inside the reactor
- Optimized reaction temperature of 37 °C
- Well designed reaction tank



StR[©] - Main features

DEWATERING

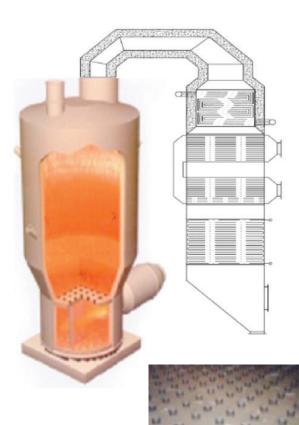
- High dewatering efficiency by high speed
- Small foot print
- Efficient abrasion protection

Typical dewatering efficiency:

- Raw municipal sludge: 28%
- Digested sludge: 30%
- Digested after disintegration: 32%

LOW TEMPERATURE DRYER

- Heated with waste heat
- Small foot print
- Explosion proof
- Compliant waste air treatment
- High thermal efficiency
- Remaining water content less than 10 %

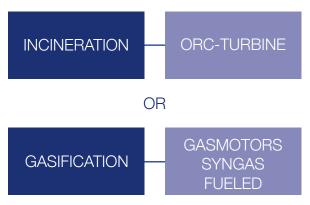


After Drying:

- Consistent granulation of residue
- Dust content < 2%
- Pneumatically conveyable
- Easy to be stored
- Hygienized according to USEPA Class A

FLUIDIZED BED INCINERATION

- Developed as decentralized incineration with a small firing capacity
- High thermal efficiency
- No deposit tendency of residues in the boiler
- Good quality of ashes
- Small foot print by small reactors
- Extremely low pollutant values in the exhaust gas
- Compliant flue gas treatment according to Chinese Standards (GB18485-2001, GB16297-1996, GB14554-93)


StR[©] - Future

ENERGY RECOVERY

At high shares of ODS in the sludge we can offer the following options:

Use of ORC-Turbine in flue gas of incineration can produce additional electrical engergy.

With gasification we can reach additional electrical energy production.

RESOURCE RECOVERY								
Phosphorus recove	ery	approx. 97%						
Ash contents	> 10%	6 Phosphorus						

Phosphorus recovery from WWTP can be considered according to relevant regulations in many developed countries, such as the USA and Germany. Phosphorus is completely retained in the residue. Transfer into struvite is possible as an option. **Phosphorus is of increasing value!**

MA: 6151205010			22		检测器会					
					25.50	本学發現化(消息)所保許技有違				
					\$1.4.Q.B.H	순석			委托检测	
					RAAM.	-	**	THE OWNER WATER OF	34年間印度服中心日	-
		3218		1.1		2017.09.		2017.09.13-	样品类别	11.8
标	测 报	4			6/108	12	24128	09.18	#####	1+1.5kg
114	NI IX				关杆张能		-		网络把各种性	#46.0483
Т	'est Report				Nents				「予判定	
								****	方施	
	鲁 环科检学[2017]0769 号				6844		****	Ł	23.82	603
					pH		9.612		C3T221-2605/4	
			1		2.6.8		*##		C2T221-2905/2	
項目名称			- (4		488		120		CI/T221-2005/1	
Name of Sample:	要托检测				88	25	081097	荧光滚	CT/T221-2005/43	0.01 mpkg
		1.1	- 1		输液涡化合物			9.兆光觉语	C3/T221-2005/25	2.00 mg/kg
委托单位	(罗亚楚代(青岛)环保科技有)	11.0.18			延走其代企物	83.08	后进了电电	分光光里边	CFT221-2985/99	0.50 mpkg
	-3 8170 14 19 19 19 19 19 19 19 19 19 19 19 19 19	4E-22 mg						10.004.00	1	
检验类别 Type of Inspection:	@ #L				· · · · · · · · · · · · · · · · · · ·	建筑已并是合成气生产厂专用污泥式建无能无用用品				
		-			pH (无意明)	11.45				
报告日期					含水果		_		30%	
Date of Issue:	2017-09-19				810				47%	
					6356.09	_	_		é nghạ	
	198120				8388.09				t ng hg t ng hg	
	689.84								HHRRAM.	
	(四) (四) (四)					manage and		-4120-		
	1998年以後数9月							4720-		

						Rive of Spectral	shrips (specify)	
	Country	Nia, Charl	Provident Sygne			Ĩ	(miyan) (diy asketance)	Y
1	Ownersy	Hogi Recycling Det Ministrif	Bulge Digestion			2.000	6.500	1995
2	Ownany	Markipality of Rostock	Araantik dijestoo				11.880	1965
а	Ownersy	Karibszine, City II	Bulge Digestion			1.200	8.000	1364
4	Ownany	sourty of Marikh, Kiruhebokach	Studge Digestion			3.500	20.000	1367
5	Ownany	Rosser Ombri Weiter- Lootmeter	Buige Digestion			2.300	15.000	12018
	Genery	Motolineitis Fertaurgengeges	Bulge Digestion			3.500	20.000	2003
7	Audia	Minkpalty of Had	Organition and Budge drywr Prodityr				2.007	2004
	Ownany	Minkipality of Others	Studge Desittegration				5.548	2005
	Ownersy	Munkapality of Kentolen	(Pondae) Ogestion and Studge-dryer				4.300	2005
10	Ownersy	Munkpality of Wangan	PluDry* Digestion and Bludge dryer				2.888	2004
	Ownany	Munkpality of Roteines	Studge Desittegration				2.408	2007
12	Balbellard	Municipality of Neon	(Ponke) Digeston and Budge dryer				1.563	2004
13	Ownersy	Minkpally of Brackmanti	PluDiy* Ogestion and Studge dryer	-			1.812	2008
14	Polend	Municipality of	Proby# OgenBon and Budge dryer	-			10.380	2004
15	Polend	Municipality of Obligant	ProDry* Digestion and Budge dryer	-			7.882	2004
	Owners	Minispelty of Decignation	ProDry* Organization and Studge dryer	-			2.478	2004
37	Romania	harts Montpality of	PuDy* Bulge Dgestion	-			1.707	2009
18	Indend	Minkipality of	Digestion and Builge dryer				5.374	2009
19	Owners	Montpallyof	Philipp ^a Synthes				2.300	2010
20	Indexed	Baltigen Munkspelty of	Ogedon and Studge dryer				5.374	2010
21	Ownersy	Connel Municipality of	ProDay SynOas	-			5.000	2011
22	Indend	Maxifully of Lefterberry	Independent Organization Studge drywr				5.822	2012
23	New Zeeland	Municipality of Christichards	Proby# Ogestion and Studge-dryer	-			17,913	3012
24	Ownersy	Multipatty of	PhoDry* Studge Desittegration	-			1.800	2013
25	Uthania	Northorn Municipality of	Ponkel Ogeston and Studge dryer	-			8.60	2013
28	Liburnie	Kiepede Municipality of Marlempole	Philippe Organition and Studge dryer				4.340	2013
27	Polend	Markempole Municipality of Zyndec	PuDys Digetton and Studge dryer				4.057	2013
28	Owners	Zpalec Statucker KD, Cite of	PuDy*			120	18.65	2214
29	Ownany	Colectual Colectual	Degradation Studge Desittegration			1200	1.000	2014
29	Polend	City of Unitian Municipality of	(Ponket) (Ponket) Organization and Mudge-dryer				4.657	2014
	Linked Arek	Stelke Dutel, Urited	Puby High laded					
31	Suitable	(LIPM)	(R219) teadur Avent 10			150	4.000	2015
22	Hungerty LISA	Kepthely Multipatry of	Degradation Studge Desittegration			34	2.000	2015
\vdash		Munkpally of Kencelle, WI Munkpally of	(Pondos)					
24	Uthania	Taures	Digestion and Studge dryer ProDy* Studge				10-000	2015
35	Ownersy	Municipality of Workshop	(Pondos)				2.000	2018
28	Romania	Municipality of Alter Life Municipality of Barranham	Bulge Digestion Bulge Desiting attor				2.280	2018
			(Pondus)					
28	Gernally	Municipality of Hootavia	sityer and SynCass Incineration				5.018	2017

Our StR process is well referenced:

Between the first digestion plants in 1995 and combination plants from disintegration, digestion and drying in 2015 as well as digestion, drying and syngas incineration in 2017, a total of 38 plants are built. Each part of the plant included in the StR concept is referenced multiple times, in many cases several parts of the StR process have been implemented.

The reference list shows that wherever a plant was built, whether in Germany, Poland or other countries, other plants were built in consequence on short term. Our clients had got what we have promised.

Incineration plant 40 MW - Kronospan, Menznau, Swiss

Fully automatic process

German engineering and core components

Syngas Incineration

German engineering and core components

StR[©] - References

Plant of Alba Iulia, Romania, Europe

WWTP 2 Digester Biogas 21500 m³/d 2 x 1300 m³ Volume 1400 m³/day Cogen-Unit150 kW = 167 Wh/m³ WWBenchmark130 Wh/m³ electrical

StR[©] - References

Plant of Orzegow, Poland

 WWTP
 54.0

 Sludge capacity
 7.88

54.000 m³/d 7.880 to/y (DS)

Evaporation capacity of dryer 2 x 1.100 kg/h


Plant of Rostok, Germany

WWTP 2 Digester Biogas 80.000 m³/d 2 x 5000 m³ Volume 8300 m³/day 2 Cogen-Units Benchmark

Output 900 kW 270 Wh/m³ electr.

Incineration plant 65 MW

Incineration plant 25 MW

StR[©] - How we work in China

Slenderness and Cost Efficiency at best available Technology (BAT)

BHU Umwelttechnik GmbH has been a successful technology partner in China since 2006. We have been able to contribute technical advantages and the resulting added value in such a way that the costs for our services are lower in OPEX and CAPEX compared to other projects. We limit ourselves to the services that are necessary to generate the technical added value and to strictly adhere to the warranted properties and guarantees. We have a team of experienced German and Chinese engineers.

In the basic package of our services we deliver:

Basic Engineering

- Conceptual design for the entire system
- Process Schemes and P & ID's
- Space management
- Accompaniment of the Chinese Design Institute
- Individual components that are subject to our know-how
 - Manufactured as far as possible in China through our subsidiary in Qingdao
 - As far as quality reasons reasonably imported from our suppliers in Europe
- We implement necessary supplementary technologies, such as low-temperature dryers or syngas combustion. This can also be done in the context of a direct procuration accompanied by us.
- Supervision for assembly and commissioning

BHU Umwelttechnik GmbH

Einsteinstraße 57 71229 Leonberg Germany

T 07152 / 3535465 F 07152 / 3535467 info@bhu-et.de

Management Board

Stefan Köppl Dr. Alessandro Meda